DocumentCode :
2066341
Title :
A data fusion approach for multi-camera based visual servoing
Author :
Assa, Akbar ; Janabi-Sharifi, Farrokh ; Moshiri, Behzad ; Mantegh, Iraj
Author_Institution :
Dept. of Mech. & Ind. Eng., Ryerson Univ., Toronto, ON, Canada
fYear :
2010
fDate :
25-27 Oct. 2010
Firstpage :
1
Lastpage :
7
Abstract :
Accurate visual servoing depends extensively on the quality of pose estimation. Sensor fusion provides a solution to improve accuracy and robustness of pose estimation. This paper introduces sensor fusion methods using two cameras to reduce the inaccuracy of pose estimation. Simulation results are reported to verify the efficiency of the proposed methods.
Keywords :
Kalman filters; image sensors; pose estimation; sensor fusion; visual servoing; data fusion approach; extended Kalman filter; multicamera based visual servoing; pose estimation; position based servoing; sensor fusion; Cameras; Estimation; Noise; Open wireless architecture; Robot vision systems; Transmission line matrix methods; data fusion; extended Kalman filter; ordered weighted averaging; pose estimation; position-based visual servoing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Optomechatronic Technologies (ISOT), 2010 International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-7684-8
Type :
conf
DOI :
10.1109/ISOT.2010.5687312
Filename :
5687312
Link To Document :
بازگشت