DocumentCode :
2066659
Title :
Probability Density Function Estimation Based on Windowed Fourier Transform of Characteristic Function
Author :
Xie, Junhao ; Wang, Zexun
Author_Institution :
Dept. of Electron. Eng., Harbin Inst. of Technol., Harbin, China
fYear :
2009
fDate :
17-19 Oct. 2009
Firstpage :
1
Lastpage :
4
Abstract :
It is known that the probability density function (PDF) of a continuous random variable is Fourier transform of the characteristic function (CF). In this paper, we propose a new type of PDF estimator based on windowed Fourier transform of CF. The window length is determined by Parseval theorem. Simulation comparisons are given to verify the validity and effectiveness of the proposed algorithm.
Keywords :
Fourier transforms; probability; Parseval theorem; characteristic function; probability density function estimation; windowed Fourier transform; Equations; Fourier transforms; Frequency domain analysis; Frequency estimation; Histograms; Kernel; Mean square error methods; Probability density function; Probability distribution; Random variables;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Signal Processing, 2009. CISP '09. 2nd International Congress on
Conference_Location :
Tianjin
Print_ISBN :
978-1-4244-4129-7
Electronic_ISBN :
978-1-4244-4131-0
Type :
conf
DOI :
10.1109/CISP.2009.5300813
Filename :
5300813
Link To Document :
بازگشت