Title :
Fusion of local statistical detectors in SAS imagery classification
Author :
Maussang, Frédéric ; Rombaut, Michèle ; Chanussot, Jocelyn ; Hétet, Alain
Author_Institution :
Lab. des Images et des Signaux, Domaine Univ., Saint-Martin-d´Heres, France
Abstract :
Detection of underwater mines is a present crucial strategic task. The images provided by synthetic aperture sonar (SAS) are then of great interest for the detection and classification of objects lying on the sea floor or buried in the sea bed. This paper proposes a detection method based on data fusion, using local statistical characteristics extracted from the SAS data. These values come from first, second, third, and fourth order statistical properties of the sonar images.
Keywords :
buried object detection; image classification; sensor fusion; synthetic aperture sonar; SAS imagery; data fusion; object classification; sea bed; sea floor; statistical characteristics; synthetic aperture sonar imagery; underwater mine detection; Buried object detection; Data mining; Detectors; Filtering; Object detection; Sea floor; Signal to noise ratio; Sonar detection; Synthetic aperture sonar; Underwater tracking;
Conference_Titel :
Oceans 2005 - Europe
Conference_Location :
Brest, France
Print_ISBN :
0-7803-9103-9
DOI :
10.1109/OCEANSE.2005.1511729