DocumentCode :
2068081
Title :
Segmentation of range and intensity images using multiscale Markov random field representations
Author :
Günsel, Bilge ; Panayirci, Erdal
Author_Institution :
Electr. & Electron. Eng. Fac., Istanbul Tech. Univ., Turkey
Volume :
2
fYear :
1994
fDate :
13-16 Nov 1994
Firstpage :
187
Abstract :
A nonlinear Markov random field (MRF) model-based segmentation method that uses multiscale MRF representations is developed. The proposed method labels the surface boundaries at a variety of spatial scales while labeling the surfaces, therefore it merges the advantages of region-based and edge-based segmentation approaches. The scheme is capable of fusing boundary information obtained at multiple scales simultaneously, resulting in a robust segmentation of range and intensity images
Keywords :
Markov processes; edge detection; image representation; image segmentation; random processes; edge-based segmentation approach; intensity images; labeling; multiscale MRF representations; multiscale Markov random field representations; range images; region-based segmentation approach; segmentation method; spatial scale; surface boundaries; Computer vision; Face detection; Image edge detection; Image restoration; Image segmentation; Labeling; Markov random fields; Object recognition; Pixel; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference
Conference_Location :
Austin, TX
Print_ISBN :
0-8186-6952-7
Type :
conf
DOI :
10.1109/ICIP.1994.413557
Filename :
413557
Link To Document :
بازگشت