DocumentCode :
2069322
Title :
Spatial entropy: a tool for controlling contextual classification convergence
Author :
MaÎtre, Henri ; Bloch, Isabelle ; Sigelle, Marc
Author_Institution :
Dept. Images, Telecom Paris, France
Volume :
2
fYear :
1994
fDate :
13-16 Nov 1994
Firstpage :
212
Abstract :
A new kind of entropy is proposed, which associates spatial and radiometric properties of images. The possible use of this entropy is shown firstly to measure the effect of picture processing algorithms, then to control the evolution of iterative contextual classification algorithms like Markov random fields
Keywords :
Markov processes; convergence of numerical methods; entropy; image classification; iterative methods; Markov random fields; contextual classification convergence; iterative contextual classification algorithms; picture processing algorithms; radiometric properties; spatial entropy; spatial properties; Convergence; Entropy; Gain measurement; Image processing; Iterative algorithms; Markov random fields; Pattern recognition; Pixel; Radiometry; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference
Conference_Location :
Austin, TX
Print_ISBN :
0-8186-6952-7
Type :
conf
DOI :
10.1109/ICIP.1994.413562
Filename :
413562
Link To Document :
بازگشت