Title :
Estimation of distribution algorithm based on multivariate Gaussian copulas
Author :
Gao, Ying ; Hu, Xiao ; Liu, Huiliang
Author_Institution :
Dept. of Comput. Sci. & Technol., Guangzhou Univ., Guangzhou, China
Abstract :
Copula is a powerful tool for multivariate probability analysis. Estimation of distribution algorithms are a class of optimization algorithms based on probability distribution model. This paper introduces a new estimation of distribution algorithm with multivariate Gaussian copulas. In the algorithm, Gaussian copula parameters are firstly estimated by estimating Kendall´s tau and using the relationship of Kendall´s tau and correlation matrix, thus, joint distribution is estimated. Then, the Monte Carte simulation is used to generate new individuals. The relative experimental results show that the new algorithm is effective.
Keywords :
Monte Carlo methods; optimisation; statistical distributions; Monte Carte simulation; correlation matrix; distribution algorithm; multivariate Gaussian copulas; multivariate probability analysis; probability distribution model; Estimation of distribution algorithm; Gaussian copulas; Kendall´s tau; Monte Carte simulation;
Conference_Titel :
Progress in Informatics and Computing (PIC), 2010 IEEE International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-6788-4
DOI :
10.1109/PIC.2010.5687453