DocumentCode :
2070434
Title :
Smart communications via a tree-based overlay over multiple and heterogeneous (TOMH) spontaneous networks
Author :
Zhijing Qin ; Iannario, Luca ; Giannelli, Carlo ; Bellavista, Paolo ; Venkatasubramanian, N.
Author_Institution :
Donald Bren Sch. of Inf. & Comput. Sci., Univ. of California, Irvine, Irvine, CA, USA
fYear :
2013
fDate :
17-19 June 2013
Firstpage :
1
Lastpage :
6
Abstract :
The current networking scenario is characterized by widespread availability of ubiquitous devices with significant processing capabilities, e.g., smartphones, tablets, and laptops. In addition, the simultaneous availability of multiple connectivity interfaces, e.g., cellular, WiFi, and Ethernet, pushes towards spontaneous networking scenarios where devices create a multi-network environment based on collaborative and best-effort dispatching of packets. Connectivity in such novel scenarios is far less reliable than in traditional networks, e.g., links abruptly dis/appear simply due to node mobility, thus making hard to support quality-sensitive applications. In this paper, we present our framework for Tree-based Overlay over Multiple and Heterogeneous (TOMH) spontaneous networks for easily supporting smart network management features on top of heterogeneous multi-network environments. TOMH creates and maintains a dynamic and mobility-aware tree-based overlay network to integrate different connectivity technologies while enabling a tradeoff between accuracy of the global network view and collection/monitoring overhead. The TOMH overlay construction mechanism has been thoroughly validated and evaluated via simulation studies: the reported experimental results reveal that our proposal significantly outperforms comparable solutions for MANET environments, especially when the size of the targeted multi-network increases.
Keywords :
mobile ad hoc networks; mobility management (mobile radio); smart phones; trees (mathematics); wireless LAN; Ethernet; MANET environments; TOMH spontaneous networks; WiFi; collection-monitoring overhead; global network; heterogeneous multinetwork environments; heterogeneous spontaneous networks; laptops; multiple connectivity interfaces; multiple spontaneous networks; node mobility; quality-sensitive applications; smart communications; smart network management; smartphones; tablets; tree-based overlay; Delays; Heart beat; IEEE 802.11 Standards; Mobile communication; Overlay networks; Protocols; Reliability; Heterogeneous multiple networks; middleware; spontaneous networking; tree-based overlay;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Smart Communications in Network Technologies (SaCoNeT), 2013 International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/SaCoNeT.2013.6654590
Filename :
6654590
Link To Document :
بازگشت