DocumentCode :
2072318
Title :
Image Classification and Retrieval using Correlation
Author :
Ahmad, Imran ; Ibrahim, Muhammad Talal
Author_Institution :
University of Windsor, Windsor, ON N9B 3P4 - Canada
fYear :
2006
fDate :
07-09 June 2006
Firstpage :
60
Lastpage :
60
Abstract :
Image retrieval methods aim to retrieve relevant images from an image database that are similar to the query image. The ability to effectively retrieve non-alphanumeric data is a complex issue. The problem becomes even more difficult due to the high dimension of the variable space associated with the images. Image classification is a very active and promising research domain in the area of image management and retrieval. In this paper, we propose a new image classification and retrieval scheme that automatically selects the discriminating features. Our method consists of two phases: (i) classification of images on the basis of maximum cross correlation and (ii) retrieval of images from the database against a given query image. The proposed retrieval algorithm recursively searches similar images on the basis of their correlation against a given query image from a set of registered images in the database. The algorithm is very efficient, provided that the mean images of all of the classes are computed and available in advance. The proposed method classifies the images on the basis of maximum correlation so that the images with more similarities and, hence, exhibiting maximum correlation with each other are grouped in the same class and, are retrieved accordingly.
Keywords :
Computer science; Content based retrieval; Image classification; Image databases; Image registration; Image retrieval; Information retrieval; Information technology; Pattern recognition; Space technology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Robot Vision, 2006. The 3rd Canadian Conference on
Print_ISBN :
0-7695-2542-3
Type :
conf
DOI :
10.1109/CRV.2006.40
Filename :
1640415
Link To Document :
بازگشت