DocumentCode :
2073645
Title :
Combining Regions and Patches for Object Class Localization
Author :
Pantofaru, Caroline ; Dorko, Gyuri ; Schmid, Cordelia ; Hebert, Martial
Author_Institution :
CMU, USA
fYear :
2006
fDate :
17-22 June 2006
Firstpage :
23
Lastpage :
23
Abstract :
We introduce a method for object class detection and localization which combines regions generated by image segmentation with local patches. Region-based descriptors can model and match regular textures reliably, but fail on parts of the object which are textureless. They also cannot repeatably identify interest points on their boundaries. By incorporating information from patch-based descriptors near the regions into a new feature, the Region-based Context Feature (RCF), we can address these issues. We apply Region-based Context Features in a semi-supervised learning framework for object detection and localization. This framework produces object-background segmentation masks of deformable objects. Numerical results are presented for pixel-level performance.
Keywords :
Computer vision; Image generation; Image segmentation; Intelligent robots; Labeling; Layout; Object detection; Semisupervised learning; Shape; Smart pixels;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on
Print_ISBN :
0-7695-2646-2
Type :
conf
DOI :
10.1109/CVPRW.2006.57
Filename :
1640462
Link To Document :
بازگشت