DocumentCode :
2074616
Title :
Quantitative assessment of levodopa-induced dyskinesia using automated motion sensing technology
Author :
Mera, T.O. ; Burack, M.A. ; Giuffrida, Joseph P.
Author_Institution :
Great Lakes NeuroTechnologies Inc., Cleveland, OH, USA
fYear :
2012
fDate :
Aug. 28 2012-Sept. 1 2012
Firstpage :
154
Lastpage :
157
Abstract :
The objective was to capture levodopa-induced dyskinesia (LID) in patients with Parkinson´s disease (PD) using body-worn motion sensors. Dopaminergic treatment in PD can induce abnormal involuntary movements, including choreatic dyskinesia (brief, rapid, irregular movements). Adjustments in medication to reduce LID often sacrifice control of motor symptoms, and balancing this tradeoff poses a significant challenge for management of advanced PD. Fifteen PD subjects with known LID were recruited and instructed to perform two stationary motor tasks while wearing a compact wireless motion sensor unit positioned on each hand over the course of a levodopa dose cycle. Videos of subjects performing the motor tasks were later scored by expert clinicians to assess global dyskinesia using the modified Abnormal Involuntary Rating Scale (m-AIMS). Kinematic features were extracted from motion data in different frequency bands (1-3Hz and 3-8Hz) to quantify LID severity and to distinguish between LID and PD tremor. Receiver operator characteristic analysis was used to determine thresholds for individual features to detect the presence of LID. A sensitivity of 0.73 and specificity of 1.00 were achieved. A neural network was also trained to output dyskinesia severity on a 0 to 4 scale, similar to the m-AIMS. The model generalized well to new data (coefficient of determination= 0.85 and mean squared error= 0.3). This study demonstrated that hand-worn motion sensors can be used to assess global dyskinesia severity independent of PD tremor over the levodopa dose cycle.
Keywords :
biomedical measurement; body sensor networks; diseases; drugs; motion measurement; sensitivity analysis; sensors; LID severity quantification; LID tremor; PD tremor; Parkinson disease patients; ROC analysis; abnormal involuntary movements; automated motion sensing technology; body worn motion sensors; choreatic dyskinesia; compact wireless motion sensor unit; dopaminergic treatment; frequency 1 Hz to 8 Hz; kinematic features; levodopa dose cycle; levodopa induced dyskinesia; m-AIMS; modified abnormal involuntary rating scale; motor symptom control; receiver operator characteristic; stationary motor tasks; Accelerometers; Data models; Feature extraction; Kinematics; Medical diagnostic imaging; Parkinson´s disease; Sensors; Aged; Antiparkinson Agents; Biomechanical Phenomena; Dyskinesia, Drug-Induced; Female; Humans; Levodopa; Male; Middle Aged; Models, Biological; Monitoring, Physiologic; Motion; Parkinson Disease; Wireless Technology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
Conference_Location :
San Diego, CA
ISSN :
1557-170X
Print_ISBN :
978-1-4244-4119-8
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2012.6345894
Filename :
6345894
Link To Document :
بازگشت