Title :
A Sequential Vehicle Classifier for Infrared Video using Multinomial Pattern Matching
Author :
Koch, Mark W. ; Malone, Kevin T.
Author_Institution :
Sandia National Laboratories, NM
Abstract :
Vehicle classification is a challenging problem, since vehicles can take on many different appearances and sizes due to their form and function, and the viewing conditions. The low resolution of uncooled-infrared video and the large variability of naturally occurring environmental conditions can make this an even more difficult problem. We develop a multilook fusion approach for improving the performance of a single look system. Our single look approach is based on extracting a signature consisting of a histogram of gradient orientations from a set of regions covering the moving object. We use the multinomial pattern matching algorithm to match the signature to a database of learned signatures. To combine the match scores of multiple signatures from a single tracked object, we use the sequential probability ratio test. Using real infrared data we show excellent classification performance, with low expected error rates, when using at least 25 looks.
Keywords :
Detectors; Histograms; Infrared sensors; Laboratories; Monitoring; Object detection; Pattern matching; Radar tracking; Sensor systems; Vehicle detection;
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on
Print_ISBN :
0-7695-2646-2
DOI :
10.1109/CVPRW.2006.21