DocumentCode :
2076763
Title :
Robust Moving Object Detection at Distance in the Visible Spectrum and Beyond Using A Moving Camera
Author :
Zhang, Yan ; Kiselewich, Stephen J. ; Bauson, William A. ; Hammoud, Riad
Author_Institution :
Delphi Electronics & Safety, Kokomo, Indiana
fYear :
2006
fDate :
17-22 June 2006
Firstpage :
131
Lastpage :
131
Abstract :
Automatic detection of moving objects at distance and in all weather conditions is a critical task in many visionbased safety applications such as video surveillance and vehicle forewarn collision warning. In such applications, prior knowledge about the object class (vehicle, pedestrian, tree, etc.) and imaging conditions (shadow, depth) is unavailable. What makes the task even more challenging is when the camera is non-stationary, e.g., mounted on a moving vehicle. The essential problem in this case lies in distinguishing between camera-induced motion and independent motion. This paper proposes a robust algorithm for automatic moving object detection at distance. The camera is mounted on a moving vehicle and operates in both day and night time. Through the utilization of the focus of expansion (FOE) and its associated residual map, the proposed method is able to detect and separate independently moving objects (IMOs) from the "moving" background caused by the camera motion. Experimentations on numerous realworld driving videos have shown the effectiveness of the proposed technique. Moving objects such as pedestrians and vehicles up to 40 meters away from the camera have been reliably detected at 10 frames per second on a 1.8GHz PC.
Keywords :
Cameras; Motion detection; Motion estimation; Object detection; Pattern recognition; Robustness; Subtraction techniques; Vehicle detection; Vehicle safety; Video surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on
Print_ISBN :
0-7695-2646-2
Type :
conf
DOI :
10.1109/CVPRW.2006.174
Filename :
1640576
Link To Document :
بازگشت