Title :
Differential privacy via wavelet transforms
Author :
Xiao, Xiaokui ; Wang, Guozhang ; Gehrke, Johannes
Author_Institution :
Nanyang Technol. Univ., Singapore, Singapore
Abstract :
Privacy preserving data publishing has attracted considerable research interest in recent years. Among the existing solutions, ¿-differential privacy provides one of the strongest privacy guarantees. Existing data publishing methods that achieve ¿-differential privacy, however, offer little data utility. In particular, if the output dataset is used to answer count queries, the noise in the query answers can be proportional to the number of tuples in the data, which renders the results useless. In this paper, we develop a data publishing technique that ensures ¿-differential privacy while providing accurate answers for range-count queries, i.e., count queries where the predicate on each attribute is a range. The core of our solution is a framework that applies wavelet transforms on the data before adding noise to it. We present instantiations of the proposed framework for both ordinal and nominal data, and we provide a theoretical analysis on their privacy and utility guarantees. In an extensive experimental study on both real and synthetic data, we show the effectiveness and efficiency of our solution.
Keywords :
data privacy; database management systems; wavelet transforms; data publishing technique; data utility; differential privacy; range-count queries; wavelet transforms; Aggregates; Data privacy; Diabetes; Frequency; Hospitals; Publishing; Sea measurements; Wavelet transforms;
Conference_Titel :
Data Engineering (ICDE), 2010 IEEE 26th International Conference on
Conference_Location :
Long Beach, CA
Print_ISBN :
978-1-4244-5445-7
Electronic_ISBN :
978-1-4244-5444-0
DOI :
10.1109/ICDE.2010.5447831