DocumentCode :
2080865
Title :
Partial discharge signal feature extraction based on Hilbert-Huang transform
Author :
Hao, Ning ; Dong, Zhuo
Author_Institution :
Voc. & Tech.Coll, North China Baoding Electr. Power, Baoding, China
fYear :
2011
fDate :
16-18 Dec. 2011
Firstpage :
2398
Lastpage :
2401
Abstract :
For on-site partial discharge detection signal contains a lot of noise, we propose a PD signal recovery method based on Hilbert-Huang transform, and simulate the denoising experiment; through the EMD decomposition of the signal with noise, and selecting the appropriate component of the superposition of the IMF, we can skillfully eliminate outside noise and retains most characteristics of partial discharge signal with little distortion. Experiments show that this method is efficient and feasible.
Keywords :
Hilbert transforms; feature extraction; partial discharges; signal denoising; signal detection; EMD decomposition; Hilbert-Huang transform; IMF superposition; PD signal recovery method; denoising experiment simulation; on-site partial discharge signal detection; outside noise elimination; partial discharge signal feature extraction; Filtering; Noise; Partial discharges; Power transformer insulation; Time frequency analysis; Transforms; Vibrations; EMD; Hilbert-Huang; Partial Discharge; White Noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Transportation, Mechanical, and Electrical Engineering (TMEE), 2011 International Conference on
Conference_Location :
Changchun
Print_ISBN :
978-1-4577-1700-0
Type :
conf
DOI :
10.1109/TMEE.2011.6199704
Filename :
6199704
Link To Document :
بازگشت