Title :
Multi-Resolution Patch Tensor for Facial Expression Hallucination
Author :
Jia, Kui ; Gong, Shaogang
Author_Institution :
Queen Mary University of London
Abstract :
In this paper, we propose a sequential approach to hallucinate/ synthesize high-resolution images of multiple facial expressions. We propose an idea of multi-resolution tensor for super-resolution, and decompose facial expression images into small local patches. We build a multi-resolution patch tensor across different facial expressions. By unifying the identity parameters and learning the subspace mappings across different resolutions and expressions, we simplify the facial expression hallucination as a problem of parameter recovery in a patch tensor space. We further add a high-frequency component residue using nonparametric patch learning from high-resolution training data. We integrate the sequential statistical modelling into a Bayesian framework, so that given any low-resolution facial image of a single expression, we are able to synthesize multiple facial expression images in high-resolution. We show promising experimental results from both facial expression database and live video sequences.
Keywords :
Active appearance model; Bayesian methods; Cameras; Image databases; Image resolution; Principal component analysis; Robustness; Tensile stress; Training data; Video sequences;
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
Print_ISBN :
0-7695-2597-0
DOI :
10.1109/CVPR.2006.196