Title :
The Hybrid-Layer Index: A synergic approach to answering top-k queries in arbitrary subspaces
Author :
Heo, Jun-Seok ; Cho, Junghoo ; Whang, Kyu-Young
Author_Institution :
Dept. of Comput. Sci., KAIST, Daejeon, South Korea
Abstract :
In this paper, we propose the Hybrid-Layer Index (simply, the HL-index) that is designed to answer top-k queries efficiently when the queries are expressed on any arbitrary subset of attributes in the database. Compared to existing approaches, the HL-index significantly reduces the number of tuples accessed during query processing by pruning unnecessary tuples based on two criteria, i.e., it filters out tuples both (1) globally based on the combination of all attribute values of the tuples like in the layer-based approach (simply, layer-level filtering) and (2) based on individual attribute values used for ranking the tuples like in the list-based approach (simply, list-level filtering). Specifically, the HL-index exploits the synergic effect of integrating the layer-level filtering method and the list-level filtering method. Details and extensive experiments are available in the full paper.
Keywords :
database management systems; query processing; set theory; arbitrary subset; arbitrary subspaces; databases; hybrid layer index; layer level filtering method; layer-level filtering; list based approach; query answering; query processing; tuples pruning; Computer interfaces; Computer science; Databases; Digital cameras; Filtering; Filters; Indexes; Partitioning algorithms; Query processing; Sensor phenomena and characterization;
Conference_Titel :
Data Engineering (ICDE), 2010 IEEE 26th International Conference on
Conference_Location :
Long Beach, CA
Print_ISBN :
978-1-4244-5445-7
Electronic_ISBN :
978-1-4244-5444-0
DOI :
10.1109/ICDE.2010.5447908