DocumentCode :
2083352
Title :
Joint optimization of transceivers with decision feedback and bit loading
Author :
Weng, Ching-Chih ; Chen, Chun-Yang ; Vaidyanathan, P.P.
Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA
fYear :
2008
fDate :
26-29 Oct. 2008
Firstpage :
1310
Lastpage :
1314
Abstract :
The transceiver optimization problem for MIMO channels has been considered in the past with linear receivers as well as with decision feedback (DFE) receivers. Joint optimization of bit allocation, precoder, and equalizer has in the past been considered only for the linear transceiver (transceiver with linear precoder and linear equalizer). It has also been observed that the use of DFE even without bit allocation in general results in better performance that linear transceivers with bit allocation. This paper provides a general study of this for transceivers with the zero-forcing constraint. It is formally shown that when the bit allocation, precoder, and equalizer are jointly optimized, linear transceivers and transceivers with DFE have identical performance in the sense that transmitted power is identical for a given bit rate and error probability. The developments of this paper are based on the generalized triangular decomposition (GTD) recently introduced by Jiang, Li, and Hager. It will be shown that a broad class of GTD-based systems solve the optimal DFE problem with bit allocation. The special case of a linear transceiver with optimum bit allocation will emerge as one of the many solutions.
Keywords :
MIMO communication; decision feedback equalisers; error statistics; precoding; radio receivers; telecommunication channels; transceivers; MIMO channel; bit loading; bit rate; decision feedback; error probability; generalized triangular decomposition; linear equalizer; linear precoder; linear receiver; linear transceiver; optimum bit allocation; transceiver optimization; zero-forcing constraint; Additive noise; Bit error rate; Bit rate; Communication systems; Decision feedback equalizers; Error probability; MIMO; Matrix decomposition; Quality of service; Transceivers; BER Optimization; Bit Allocation; Decision Feed-Back; Generalized Triangular Decomposition; MIMO Transceiver;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2008 42nd Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-2940-0
Electronic_ISBN :
1058-6393
Type :
conf
DOI :
10.1109/ACSSC.2008.5074630
Filename :
5074630
Link To Document :
بازگشت