DocumentCode :
2083525
Title :
Distributed linear parameter estimation in sensor networks: Convergence properties
Author :
Kar, Soummya ; Moura, José M F
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA
fYear :
2008
fDate :
26-29 Oct. 2008
Firstpage :
1347
Lastpage :
1351
Abstract :
The paper considers the problem of distributed linear vector parameter estimation in sensor networks, when sensors can exchange quantized state information and the inter-sensor communication links fail randomly. We show that our algorithm LU leads to almost sure (a.s.) consensus of the local sensor estimates to the true parameter value, under the assumptions that, a minimal global observability criterion is satisfied and the network is connected in the mean, i.e., lambda2(Lmacr) Gt 0, where Lmacr is the expected Laplacian matrix. We show that the local sensor estimates are asymptotically normal and characterize the convergence rate of the algorithm in the framework of moderate deviations.
Keywords :
matrix algebra; wireless sensor networks; convergence properties; distributed linear vector parameter estimation; expected Laplacian matrix; minimal global observability criterion; quantized state information; wireless sensor networks; Communication channels; Context; Convergence; Laplace equations; Observability; Parameter estimation; Sensor fusion; Sensor phenomena and characterization; Stochastic processes; Wireless sensor networks; Asymptotic Normality; Consistency; Distributed Parameter Estimation; Quantization; Random Link Failures;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2008 42nd Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-2940-0
Electronic_ISBN :
1058-6393
Type :
conf
DOI :
10.1109/ACSSC.2008.5074638
Filename :
5074638
Link To Document :
بازگشت