DocumentCode :
2083776
Title :
Shape-Based Approach to Robust Image Segmentation using Kernel PCA
Author :
Dambreville, Samuel ; Rathi, Yogesh ; Tannen, A.
Author_Institution :
Georgia Institute of Technology
Volume :
1
fYear :
2006
fDate :
17-22 June 2006
Firstpage :
977
Lastpage :
984
Abstract :
Segmentation involves separating an object from the background. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, within the level-set framework. Following the work of Leventon et al., we revisit the use of principal component analysis (PCA) to introduce prior knowledge about shapes in a more robust manner. To this end, we utilize Kernel PCA and show that this method of learning shapes outperforms linear PCA, by allowing only shapes that are close enough to the training data. In the proposed segmentation algorithm, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description allows to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, clutter, partial occlusions, or smearing.
Keywords :
Active contours; Application software; Computer vision; Encoding; Image segmentation; Kernel; Noise robustness; Principal component analysis; Shape; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-2597-0
Type :
conf
DOI :
10.1109/CVPR.2006.279
Filename :
1640857
Link To Document :
بازگشت