DocumentCode :
2083928
Title :
Active Graph Cuts
Author :
Juan, Olivier ; Boykov, Yuri
Author_Institution :
CERTIS, Ecole Nationale des Ponts et Chaussees Champs-sur-Marne, France
Volume :
1
fYear :
2006
fDate :
17-22 June 2006
Firstpage :
1023
Lastpage :
1029
Abstract :
This paper adds a number of novel concepts into global s/t cut methods improving their efficiency and making them relevant for a wider class of applications in vision where algorithms should ideally run in real-time. Our new Active Cuts (AC) method can effectively use a good approximate solution (initial cut) that is often available in dynamic, hierarchical, and multi-label optimization problems in vision. In many problems AC works faster than the state-of-the-art max-flow methods [2] even if initial cut is far from the optimal one. Moreover, empirical speed improves several folds when initial cut is spatially close to the optima. Before converging to a global minima, Active Cuts outputs a multitude of intermediate solutions (intermediate cuts) that, for example, can be used be accelerate iterative learning-based methods or to improve visual perception of graph cuts realtime performance when large volumetric data is segmented. Finally, it can also be combined with many previous methods for accelerating graph cuts.
Keywords :
Acceleration; Application software; Computer science; Computer vision; Costs; Image segmentation; Iterative methods; Optimization methods; Testing; Visual perception;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-2597-0
Type :
conf
DOI :
10.1109/CVPR.2006.47
Filename :
1640863
Link To Document :
بازگشت