• DocumentCode
    2085342
  • Title

    Invariant features for 3-D gesture recognition

  • Author

    Campbell, Lee W. ; Becker, David A. ; Azarbayejani, Ali ; Bobick, Aaron E. ; Pentland, Alex

  • Author_Institution
    Media Lab., MIT, Cambridge, MA, USA
  • fYear
    1996
  • fDate
    14-16 Oct 1996
  • Firstpage
    157
  • Lastpage
    162
  • Abstract
    Ten different feature vectors are tested in a gesture recognition task which utilizes 3D data gathered in real-time from stereo video cameras, and HMMs for learning and recognition of gestures. Results indicate velocity features are superior to positional features, and partial rotational invariance is sufficient for good performance
  • Keywords
    computer vision; feature extraction; image recognition; 3D data; HMMs; feature vectors; gesture recognition; learning; partial rotational invariance; recognition; stereo video cameras; velocity features; Arm; Birds; Brushes; Cameras; Clouds; Hidden Markov models; Horses; Knee; Tail; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference on
  • Conference_Location
    Killington, VT
  • Print_ISBN
    0-8186-7713-9
  • Type

    conf

  • DOI
    10.1109/AFGR.1996.557258
  • Filename
    557258