Title :
Learning Temporal Sequence Model from Partially Labeled Data
Author :
Shi, Yifan ; Bobick, Aaron ; Essa, Irfan
Author_Institution :
Georgia Institute Of Technology, Atalanta
Abstract :
Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.
Keywords :
Application software; Boosting; Computer vision; Detectors; Graphical models; Hidden Markov models; Learning systems; Semisupervised learning; State-space methods; Surveillance;
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
Print_ISBN :
0-7695-2597-0
DOI :
10.1109/CVPR.2006.174