Title :
Local Features, All Grown Up
Author :
Vedaldi, Andrea ; Soatto, Stefano
Author_Institution :
UCLA
Abstract :
We present a technique to adapt the domain of local features through the matching process to augment their discriminative power. We start with local affine features selected and normalized independently in training and test images, and jointly expand their domain as part of the correspondence process, akin to a (non-rigid) registration task that yields a (multi-view) segmentation of the object of interest from clutter, including the detection of occlusions. We show how our growth process can be used to validate putative affine matches, to match a given "template" (an image of an object without clutter) to a cluttered and partially occluded image, and to match two images that contain the same unknown object in different clutter under different occlusions (unsupervised object detection).
Keywords :
Deformable models; Graphical models; Image recognition; Image segmentation; Layout; Object detection; Shape; Statistics; Testing; Three dimensional displays;
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
Print_ISBN :
0-7695-2597-0
DOI :
10.1109/CVPR.2006.176