• DocumentCode
    2086809
  • Title

    Search Result Clustering Using Fuzzy C-Mean and Gustafon Kessel Algorithms: A Comparative Study

  • Author

    Al-Dubaee, Shawki A. ; Ahmad, Nesar

  • Author_Institution
    Dept. of Comput. Eng., Aligarh Muslim Univ., Aligarh, India
  • fYear
    2010
  • fDate
    5-7 Aug. 2010
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    During the last few years, the search result clustering has attracted a substantial amount of research. In this paper, we present a comparative study of the performance of fuzzy clustering algorithms, namely Fuzzy C-Means (FCM), and Gustafson-Kessel (GK) algorithms with clustering search results. Therefore, there is a need to reduce the information, help filtering out irrelevant items, and favors exploration of unknown or dynamic domains in a better way by clustering the search results.
  • Keywords
    Internet; fuzzy set theory; information filtering; pattern clustering; search engines; Gustafon Kessel algorithm; fuzzy C-mean algorithm; fuzzy clustering; irrelevant item filtering; search engine; search result clustering; Algorithm design and analysis; Clustering algorithms; Heuristic algorithms; Indexes; Internet; Partitioning algorithms; Search engines; Fuzzy C-Mean; Gustafon kessel; cluster analysis; search engine;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Integrated Intelligent Computing (ICIIC), 2010 First International Conference on
  • Conference_Location
    Bangalore
  • Print_ISBN
    978-1-4244-7963-4
  • Electronic_ISBN
    978-0-7695-4152-5
  • Type

    conf

  • DOI
    10.1109/ICIIC.2010.50
  • Filename
    5572640