DocumentCode :
2088664
Title :
Rate estimation via maximum likelihood parameter estimation: Application in fast mode-selection within the H.264/AVC
Author :
Minoo, Koohyar ; Nguyen, Truong Q.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA
fYear :
2008
fDate :
26-29 Oct. 2008
Firstpage :
2253
Lastpage :
2257
Abstract :
In this paper a novel method to estimate the required bits for representing the coded (quantized) coefficients within a block of natural video sequences is proposed. The proposed method assumes a parameterized probabilistic model for coded data and utilizes a maximum likelihood parameter estimation technique to estimate the model´s parameters. The proposed method achieves a robust estimation of the rate based on the estimated probability of each coefficient based on zero order entropy. The rate estimation via maximum likelihood parameter estimation enjoys lower computational complexity, compared to the actual entropy coding of the data. For the purpose of rate estimation we consider a number of options to estimate the parameters of the probabilistic model of coded data. In the context optimal mode selection within the H.264/AVC video codec, the rate estimation method is used to estimate a Lagrangian rate-distortion cost which would be minimized for the optimal mode. The experimental results show that the proposed method considerably reduces the computational complexity while maintaining almost the same rate-distortion coding efficiency compared to mode selection using the actual rate.
Keywords :
maximum likelihood estimation; video codecs; video coding; H.264/AVC video codec; Lagrangian rate-distortion cost; advanced video coding; coded data; computational complexity; context optimal mode selection; entropy coding; fast mode-selection; maximum likelihood parameter estimation; natural video sequences; parameterized probabilistic model; rate estimation; rate-distortion coding efficiency; zero order entropy; Automatic voltage control; Computational complexity; Entropy coding; Lagrangian functions; Maximum likelihood estimation; Parameter estimation; Rate-distortion; Robustness; Video codecs; Video sequences; H.264; Rate estimation; maximum likelihood; optimal mode selection; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2008 42nd Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-2940-0
Electronic_ISBN :
1058-6393
Type :
conf
DOI :
10.1109/ACSSC.2008.5074837
Filename :
5074837
Link To Document :
بازگشت