DocumentCode :
2089513
Title :
Spectral clustering of shape and probability prior models for automatic prostate segmentation
Author :
Ghose, Sarbani ; Mitra, Joydeep ; Oliver, Arnau ; Marti, Robert ; Llado, Xavier ; Freixenet, J. ; Vilanova, J.C. ; Comet, J. ; Sidibe, Desire ; Meriaudeau, Fabrice
Author_Institution :
Le2i, Univ. de Bourgogne, Le Creusot, France
fYear :
2012
fDate :
Aug. 28 2012-Sept. 1 2012
Firstpage :
2335
Lastpage :
2338
Abstract :
Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape and appearance parameters ensure improvement in segmentation accuracies. The proposed method achieves mean Dice similarity coefficient (DSC) value of 0.96±0.01, with a mean segmentation time of 0.67±0.02 seconds when validated with 46 images from 23 datasets in a leave-one-patient-out validation framework.
Keywords :
biological organs; biomedical ultrasonics; image segmentation; medical image processing; principal component analysis; PCA; TRUS images; appearance parameters; automatic prostate segmentation; computer aided automatic segmentation; computer aided semiautomatic segmentation; imaging artifacts; intensity prior; multiple mean parametric models; posterior probability information; principal component analysis; prior probability model; prostate shape interpatient variations; prostate size interpatient variations; shape information; shape parameters; shape prior model; spectral clustering; transrectal ultrasound images; Accuracy; Active appearance model; Computational modeling; Image segmentation; Probability; Shape; Training; Prostate segmentation; random forest; spectral clustering; statistical shape and posterior probability models; Computer Simulation; Humans; Image Interpretation, Computer-Assisted; Male; Models, Biological; Models, Statistical; Pattern Recognition, Automated; Prostate; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique; Ultrasonography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
Conference_Location :
San Diego, CA
ISSN :
1557-170X
Print_ISBN :
978-1-4244-4119-8
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2012.6346431
Filename :
6346431
Link To Document :
بازگشت