DocumentCode :
2090200
Title :
Self-similar chain of metal nanospheres as efficient nanolens
Author :
Stockman, Mark I. ; Li, Kuiru ; Bergman, David J.
Author_Institution :
Dept. of Phys. & Astron., Georgia State Univ., Atlanta, GA
fYear :
2004
fDate :
21-21 May 2004
Firstpage :
864
Lastpage :
866
Abstract :
As an efficient nanolens, we propose a self-similar linear chain of several metal nanospheres with progressively decreasing sizes and separations. To describe such systems, we develop the multipole spectral expansion method. Optically excited, such a nanolens develops the nanofocus ("hottest spot") in the gap between the smallest nanospheres, where the local fields are enhanced by orders of magnitude due to multiplicative, cascade effect of its geometry and high $Q-factor of surface plasmon resonance. The spectral maximum of the enhancement is in the near-ultraviolet, shifting toward the red as the separation between the spheres decreases. The proposed system can be used for nanooptical detection, Raman characterization, nonlinear spectroscopy, nano-manipulation of single molecules or nanoparticles, and other applications
Keywords :
Q-factor; lenses; nanoparticles; optical focusing; surface plasmon resonance; Raman characterization; high Q-factor; metal nanospheres; multipole spectral expansion method; nanofocus; nanolens; nanomanipulation; nanooptical detection; nanoparticles; nonlinear spectroscopy; surface plasmon resonance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Quantum Electronics Conference, 2004. (IQEC). International
Conference_Location :
San Francisco, CA
Print_ISBN :
1-55752-778-4
Type :
conf
Filename :
1367040
Link To Document :
بازگشت