• DocumentCode
    2098513
  • Title

    A Note on Superconvergence of Recovered Gradients of Tensor-Product Linear Pentahedral Finite Element Approximations

  • Author

    Liu, Jinghong ; Yin, Decheng ; Zhu, Qiding

  • Author_Institution
    Ningbo Inst. of Technol., Zhejiang Univ., Ningbo, China
  • fYear
    2011
  • fDate
    17-18 Sept. 2011
  • Firstpage
    227
  • Lastpage
    229
  • Abstract
    For a second-order variable coefficient elliptic boundary value problem in three dimensions, we use an interpolation post processing technique, combined with super closeness, to obtain super convergence error estimate of pentahedral FEM.
  • Keywords
    approximation theory; boundary-value problems; convergence of numerical methods; elliptic equations; error statistics; finite element analysis; gradient methods; interpolation; tensors; interpolation post processing technique; pentahedral FEM; recovered gradients; second-order variable coefficient elliptic boundary value problem; super closeness; super convergence error estimate; superconvergence; tensor-product linear pentahedral finite element approximations; Educational institutions; Finite element methods; Interpolation; Polynomials; Presses; Three dimensional displays; pentahedral finite element; recovered gradient; superconvergence; variable coefficient elliptic problem;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Internet Computing & Information Services (ICICIS), 2011 International Conference on
  • Conference_Location
    Hong Kong
  • Print_ISBN
    978-1-4577-1561-7
  • Type

    conf

  • DOI
    10.1109/ICICIS.2011.65
  • Filename
    6063237