DocumentCode :
2098513
Title :
A Note on Superconvergence of Recovered Gradients of Tensor-Product Linear Pentahedral Finite Element Approximations
Author :
Liu, Jinghong ; Yin, Decheng ; Zhu, Qiding
Author_Institution :
Ningbo Inst. of Technol., Zhejiang Univ., Ningbo, China
fYear :
2011
fDate :
17-18 Sept. 2011
Firstpage :
227
Lastpage :
229
Abstract :
For a second-order variable coefficient elliptic boundary value problem in three dimensions, we use an interpolation post processing technique, combined with super closeness, to obtain super convergence error estimate of pentahedral FEM.
Keywords :
approximation theory; boundary-value problems; convergence of numerical methods; elliptic equations; error statistics; finite element analysis; gradient methods; interpolation; tensors; interpolation post processing technique; pentahedral FEM; recovered gradients; second-order variable coefficient elliptic boundary value problem; super closeness; super convergence error estimate; superconvergence; tensor-product linear pentahedral finite element approximations; Educational institutions; Finite element methods; Interpolation; Polynomials; Presses; Three dimensional displays; pentahedral finite element; recovered gradient; superconvergence; variable coefficient elliptic problem;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Internet Computing & Information Services (ICICIS), 2011 International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4577-1561-7
Type :
conf
DOI :
10.1109/ICICIS.2011.65
Filename :
6063237
Link To Document :
بازگشت