DocumentCode
2098513
Title
A Note on Superconvergence of Recovered Gradients of Tensor-Product Linear Pentahedral Finite Element Approximations
Author
Liu, Jinghong ; Yin, Decheng ; Zhu, Qiding
Author_Institution
Ningbo Inst. of Technol., Zhejiang Univ., Ningbo, China
fYear
2011
fDate
17-18 Sept. 2011
Firstpage
227
Lastpage
229
Abstract
For a second-order variable coefficient elliptic boundary value problem in three dimensions, we use an interpolation post processing technique, combined with super closeness, to obtain super convergence error estimate of pentahedral FEM.
Keywords
approximation theory; boundary-value problems; convergence of numerical methods; elliptic equations; error statistics; finite element analysis; gradient methods; interpolation; tensors; interpolation post processing technique; pentahedral FEM; recovered gradients; second-order variable coefficient elliptic boundary value problem; super closeness; super convergence error estimate; superconvergence; tensor-product linear pentahedral finite element approximations; Educational institutions; Finite element methods; Interpolation; Polynomials; Presses; Three dimensional displays; pentahedral finite element; recovered gradient; superconvergence; variable coefficient elliptic problem;
fLanguage
English
Publisher
ieee
Conference_Titel
Internet Computing & Information Services (ICICIS), 2011 International Conference on
Conference_Location
Hong Kong
Print_ISBN
978-1-4577-1561-7
Type
conf
DOI
10.1109/ICICIS.2011.65
Filename
6063237
Link To Document