DocumentCode :
2100316
Title :
FNS and HEIV: relating two vision parameter estimation frameworks
Author :
Chojnacki, Wojciech ; Brooks, Michael J. ; Van den Hengel, Anton ; Gawley, Darren
Author_Institution :
Sch. of Comput. Sci., Adelaide Univ., SA, Australia
fYear :
2003
fDate :
17-19 Sept. 2003
Firstpage :
152
Lastpage :
157
Abstract :
Problems requiring accurate determination of parameters from image-based quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here it is shown that FNS (fundamental numerical scheme) and a core version of HEIV (heteroscedastic errors-in-variables) are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalised eigenvalue problem, and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalise and inter-relate a spectrum of estimators, including the renormalisation method of Kanatani and the normalised eight-point method of Hartley.
Keywords :
computer vision; eigenvalues and eigenfunctions; parameter estimation; renormalisation; FNS; HEIV; Hartley normalised eight-point method; Kanatani renormalisation method; computer vision; fundamental numerical scheme; generalised eigenvalue problem; heteroscedastic errors-in-variables; nondegenerate form; vision parameter estimation; Artificial intelligence; Australia; Computer science; Computer vision; Cost function; Covariance matrix; Differential equations; Gold; Maximum likelihood estimation; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Analysis and Processing, 2003.Proceedings. 12th International Conference on
Print_ISBN :
0-7695-1948-2
Type :
conf
DOI :
10.1109/ICIAP.2003.1234042
Filename :
1234042
Link To Document :
بازگشت