• DocumentCode
    2101145
  • Title

    Optimal robust filtering for linear systems subject to time-varying parameter perturbations

  • Author

    Bolzern, Paolo ; Colaneri, Patrizio ; Nicolao, Giuseppe De

  • Author_Institution
    Dipartimento di Elettronica e Inf., Politecnico di Milano, Italy
  • fYear
    1993
  • fDate
    15-17 Dec 1993
  • Firstpage
    1018
  • Abstract
    Stochastic linear systems subject to time-varying parameter uncertainties in the state and output matrices are considered. A linear filter is used to estimate a linear combination of the states of the system. When the filter is given, the stabilizing solution of a suitable Riccati equation is shown to yield an upper bound for the covariance of the estimation error. The main problem addressed in the paper is the design of an “optimal robust filter” that minimizes such a covariance bound. Necessary and sufficient conditions for the existence of an optimal robust filter are given in the full order case. The computation of the optimal filter calls for the solution of a Riccati equation that generalizes the standard Riccati equation for the Kalman filtering problem
  • Keywords
    filtering and prediction theory; linear systems; minimisation; stability; state estimation; stochastic systems; Kalman filtering problem; Riccati equation; covariance bound; estimation error; linear filter; linear systems; necessary and sufficient conditions; optimal robust filtering; stochastic linear systems; time-varying parameter perturbations; time-varying parameter uncertainties; Covariance matrix; Filtering; Linear systems; Nonlinear filters; Riccati equations; Robustness; State estimation; Stochastic systems; Time varying systems; Uncertain systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
  • Conference_Location
    San Antonio, TX
  • Print_ISBN
    0-7803-1298-8
  • Type

    conf

  • DOI
    10.1109/CDC.1993.325339
  • Filename
    325339