DocumentCode :
2102612
Title :
Algebraic Riccati equations and infinitesimal V-stability, a Grobner basis approach
Author :
Fathpour, Nanaz ; Jonckheere, Edmond A.
Author_Institution :
Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA
Volume :
6
fYear :
2002
fDate :
2002
Firstpage :
5138
Abstract :
We investigate the connection between infinitesimal V-stability of solutions to the algebraic Riccati equations, the Hamiltonian eigenstructure of the solutions, and the quadratic differential of the corresponding Riccati map. Infinitesimal V-stability of critical points of the Riccati map is crucially related to stability of the Riccati map and characterizes the behavior of these solutions under perturbations of problem data. Grobner bases are used to implement the calculations.
Keywords :
Riccati equations; eigenvalues and eigenfunctions; matrix algebra; numerical stability; Grobner basis approach; Hamiltonian eigenstructure; Riccati map; algebraic Riccati equations; critical points; infinitesimal V-stability; quadratic differential; Algebra; Bifurcation; Differential algebraic equations; Differential equations; Jacobian matrices; Riccati equations; Stability; Structural engineering; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2002. Proceedings of the 2002
ISSN :
0743-1619
Print_ISBN :
0-7803-7298-0
Type :
conf
DOI :
10.1109/ACC.2002.1025482
Filename :
1025482
Link To Document :
بازگشت