Title :
A network analysis of the dynamics of seizure
Author :
Burns, S.P. ; Sritharan, Duluxan ; Jouny, C. ; Bergey, G. ; Crone, N. ; Anderson, William S. ; Sarma, Sridevi V.
Author_Institution :
Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA
fDate :
Aug. 28 2012-Sept. 1 2012
Abstract :
Seizures are events that spread through the brain´s network of connections and create pathological activity. To understand what is occurring in the brain during seizure we investigated the time progression of the brain´s state from seizure onset to seizure suppression. Knowledge of a seizure´s dynamics and the associated spatial structure is important for localizing the seizure foci and determining the optimal location and timing of electrical stimulation to mitigate seizure development. In this study, we analyzed intracranial EEG data recorded in 2 human patients with drug-resistant epilepsy prior to undergoing resection surgery using network analyses. Specifically, we computed a time sequence of connectivity matrices from iEEG (intracranial electroencephalography) recordings that represent network structure over time. For each patient, connectivity between electrodes was measured using the coherence in the band of frequencies with the strongest modulation during seizure. The connectivity matrices´ structure was analyzed using an eigen-decomposition. The leading eigenvector was used to estimate each electrode´s time dependent centrality (importance to the network´s connectivity). The electrode centralities were clustered over the course of each seizure and the cluster centroids were compared across seizures. We found, for each patient, there was a consistent set of centroids that occurred during each seizure. Further, the brain reliably evolved through the same progression of states across multiple seizures including characteristic onset and suppression states.
Keywords :
electroencephalography; medical disorders; neurophysiology; brain network; connectivity matrices structure; drug resistant epilepsy; eigendecomposition; electrical stimulation; intracranial EEG data; intracranial electroencephalography; network analysis; pathological activity; resection surgery; seizure dynamics; seizure suppression; Electrodes; Electroencephalography; Epilepsy; Frequency measurement; Frequency modulation; Humans; Synchronization; Algorithms; Brain; Computer Simulation; Connectome; Electroencephalography; Models, Neurological; Nerve Net; Neural Pathways; Seizures;
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-4119-8
Electronic_ISBN :
1557-170X
DOI :
10.1109/EMBC.2012.6347012