Title :
Soft Sensor method of mill load for grinding process based on GA-PLS from spectral data using feature selection
Author :
Tang Jian ; Zhao Li-Jie ; Yue Heng ; Chai Tian-You
Author_Institution :
Minist. of Educ., Key Lab. of Integrated Autom. for Process Ind., Shenyang, China
Abstract :
Mill load (ML) is a key parameter of grinding process, and whether the state of ML (low load, optimal load, over load) and the operate parameters (pulp density, material to ball mass ratio, load volume charge ratio) can be accurate identified affects the quality&quantity of the production and safety of the devices. In practice, the state of ML is monitored by the experience of the operator, and the state of the operate parameters of the mill can not be measured. A soft sensor method of the ML based on Genetic Algorithm-Partial Least Squares (GA-PLS) from spectral data of the mill shell vibration and acoustical signal using feature selection is presented. First the vibration and acoustical signals are transformed from time domain to frequency domain, and then GA-PLS is used to select the feature spectral variable respectively, and finally the selected feature spectral variable fused with the current of mill motor, three PLS1 models are developed to predict the operate parameters. A grinding process of laboratory scale experiment study shows that the proposed soft-sensor method for grinding process produces better predictive performance than traditional Principal Component Regression(PCR) and PLS method based on full spectral data.
Keywords :
acoustic signal processing; genetic algorithms; grinding; least squares approximations; production engineering computing; vibrations; acoustical signal; feature selection; frequency domain; genetic algorithm; grinding process; mill load; mill shell vibration; partial least squares; soft sensor method; spectral data; time domain; Analytical models; Automation; Data models; Electronic mail; Genetic algorithms; Laboratories; Vibrations; Feature selection; Genetic Algorithm (GA); Mill Load (ML); Partial Least Squares (PLS); Soft sensor; Spectral;
Conference_Titel :
Control Conference (CCC), 2010 29th Chinese
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-6263-6