DocumentCode :
2106212
Title :
Kernel Discriminant Analysis Algorithm for Document Categorization
Author :
Wang, Ziqiang ; Qian, Xu
Author_Institution :
Coll. of Mech. Electron. & Inf. Eng., China Univ. of Min. & Technol., Beijing
fYear :
2008
fDate :
21-22 Dec. 2008
Firstpage :
601
Lastpage :
604
Abstract :
Document categorization is one of the most crucial techniques to organize the documents in a supervised manner. To efficiently resolve document classification problems, a novel document classification algorithm based on kernel discriminant analysis (KDA) is proposed in this paper. The high-dimensional document sets are first mapped into lower-dimensional space with KDA, then the SVM is applied to classify the documents into semantically different classes. Experimental results demonstrate the effectiveness and efficiency of the proposed KDA algorithm.
Keywords :
document handling; KDA; SVM; document categorization; document classification algorithm; high-dimensional document sets; kernel discriminant analysis algorithm; Algorithm design and analysis; Classification algorithms; Data mining; Information retrieval; Kernel; Large scale integration; Pattern recognition; Support vector machine classification; Support vector machines; Text analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Technology Application Workshops, 2008. IITAW '08. International Symposium on
Conference_Location :
Shanghai
Print_ISBN :
978-0-7695-3505-0
Type :
conf
DOI :
10.1109/IITA.Workshops.2008.43
Filename :
4732010
Link To Document :
بازگشت