• DocumentCode
    2106359
  • Title

    On eigenvalue surfaces near a diabolic point

  • Author

    Kirillov, O.N. ; Mailybaev, A.A. ; Seyranian, A.P.

  • Author_Institution
    Inst. of Mech., Moscow State Lomonosov Univ., Russia
  • fYear
    2005
  • fDate
    24-26 Aug. 2005
  • Firstpage
    319
  • Lastpage
    325
  • Abstract
    The paper presents a theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point. General asymptotic formulae describing deformations of a conical surface for different kinds of perturbing matrices are derived. As a physical application, singularities of the surfaces of refractive indices in crystal optics are studied.
  • Keywords
    Hermitian matrices; eigenvalues and eigenfunctions; refractive index; Hermitian matrix; arbitrary complex perturbation; asymptotic formulae; conical surface deformation; crystal optics; diabolic point; eigenvalue surfaces; real symmetric matrix; refractive indices; Bifurcation; Chemistry; Eigenvalues and eigenfunctions; Optical filters; Optical refraction; Optical variables control; Physics; Quantum mechanics; Surface treatment; Symmetric matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Physics and Control, 2005. Proceedings. 2005 International Conference
  • Print_ISBN
    0-7803-9235-3
  • Type

    conf

  • DOI
    10.1109/PHYCON.2005.1514000
  • Filename
    1514000