DocumentCode :
2107789
Title :
Fast retrieval of multi- and hyperspectral images using relevance feedback
Author :
Alber, Irwin E. ; Xiong, Ziyou ; Yeager, Nancy ; Farber, Morton ; Pottenger, William M.
Author_Institution :
Boeing Integrated Defense Syst., Seal Beach, CA, USA
Volume :
3
fYear :
2001
fDate :
2001
Firstpage :
1149
Abstract :
A high speed of retrieval is very important to developing an effective image cube search algorithm for the remote sensing community. Following the work of Berman and Shapiro (1999), it is shown that a triangle inequality search technique applied to a relevance feedback retrieval algorithm can significantly speed up the search for and retrieval of physical events of interest in large remote-sensing databases. An improvement in retrieval speed is illustrated using hurricane queries applied to the multispectral GOES database
Keywords :
content-based retrieval; geophysics computing; image retrieval; relevance feedback; remote sensing; search problems; storms; visual databases; hurricane queries; hyperspectral images; image cube search algorithm; multispectral GOES database; multispectral images; relevance feedback; relevance feedback retrieval algorithm; remote sensing; triangle inequality search technique; Algorithm design and analysis; Feedback; Hurricanes; Hyperspectral imaging; Image analysis; Image databases; Image retrieval; Information retrieval; Radio frequency; Remote sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International
Conference_Location :
Sydney, NSW
Print_ISBN :
0-7803-7031-7
Type :
conf
DOI :
10.1109/IGARSS.2001.976774
Filename :
976774
Link To Document :
بازگشت