DocumentCode :
2107975
Title :
Model reference adaptive control of abstract hyperbolic distributed parameter systems
Author :
Demetriou, M.A. ; Rosen, I.G.
Author_Institution :
Center for Res. in Sci. Comput., North Carolina State Univ., Raleigh, NC, USA
fYear :
1993
fDate :
15-17 Dec 1993
Firstpage :
2424
Abstract :
An abstract theory for the model reference adaptive control of abstract hyperbolic distributed parameter systems is developed. A feedback control law based upon estimates of the unknown parameters together with update laws for the unknown parameters are given. A Lyapunov estimate together with a version of Barbalat´s lemma is used to establish that the plant´s displacement and velocity track the displacement and velocity of the reference model while the closed loop input and output remain bounded. A richness or persistence of excitation condition in terms of the state of the reference model is defined and used to establish parameter convergence. An example including numerical simulation results for a one dimensional visco-elastic wave equation is presented
Keywords :
Lyapunov methods; convergence; distributed parameter systems; feedback; model reference adaptive control systems; parameter estimation; Barbalat´s lemma; Lyapunov estimate; abstract hyperbolic distributed parameter systems; closed loop input; closed loop output; feedback control law; model reference adaptive control; numerical simulation; one dimensional visco-elastic wave equation; parameter convergence; persistence of excitation; unknown parameters; Adaptive control; Boundary conditions; Convergence; Damping; Distributed computing; Distributed parameter systems; Mathematical model; Mathematics; Partial differential equations; Tracking loops;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
0-7803-1298-8
Type :
conf
DOI :
10.1109/CDC.1993.325633
Filename :
325633
Link To Document :
بازگشت