Title :
Adaptive parameter estimation for a class of delay equations with persistence of excitation
Author :
Kazimir, J.R. ; Rosen, I.G.
Author_Institution :
Center for Appl. Math. Sci., Univ. of Southern California, Los Angeles, CA, USA
Abstract :
We consider the adaptive (on line) estimation of parameters for a class of delay or hereditary systems. A combined state and parameter estimator is constructed as an initial value problem in an appropriate Hilbert space. State convergence is established via a Lyapunov-like estimate. The finite dimensional notion of persistence of excitation is extended to systems with delays and is used to establish parameter convergence. Results of numerical studies involving a one dimensional, single delay equation are presented to demonstrate the feasibility of our approach
Keywords :
Lyapunov methods; delays; distributed parameter systems; initial value problems; parameter estimation; Hilbert space; Lyapunov-like estimate; adaptive parameter estimation; delay systems; excitation persistence; hereditary systems; initial value problem; one-dimensional single delay equation; online estimation; parameter convergence; state convergence; Asymptotic stability; Convergence; Delay estimation; Delay systems; Differential equations; Hilbert space; Integral equations; Parameter estimation; State estimation; Transforms;
Conference_Titel :
Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
0-7803-1298-8
DOI :
10.1109/CDC.1993.325670