DocumentCode :
2109128
Title :
Data assimilation of glucose dynamics for use in the intensive care unit
Author :
Sedigh-Sarvestani, M. ; Albers, D.J. ; Gluckman, Bruce J.
Author_Institution :
Dept. of Eng. Sci. & Mech., Pennsylvania State Univ., University Park, PA, USA
fYear :
2012
fDate :
Aug. 28 2012-Sept. 1 2012
Firstpage :
5437
Lastpage :
5440
Abstract :
We know much about the glucose regulatory system, yet the application of this knowledge is limited because simultaneous measurements of insulin and glucose are difficult to obtain. We present a data assimilation framework for combining sparse measurements of the glucose regulatory system, available in the intensive care unit setting, with a nonlinear computational model to estimate unmeasured variables and unknown parameters. We also demonstrate a method for choosing the best variables for measurement. We anticipate that this framework will improve glucose maintenance therapies and shed light on the underlying biophysical process.
Keywords :
biochemistry; biomedical measurement; blood; data assimilation; parameter estimation; patient treatment; physiological models; sugar; biophysical process; data assimilation framework; glucose dynamics; glucose maintenance therapy; glucose measurements; glucose regulatory system; insulin measurements; intensive care unit setting; nonlinear computational model; unknown parameter estimation; unmeasured variable estimation; Data assimilation; Data models; Insulin; Mathematical model; Observability; Plasmas; Sugar; Blood Glucose; Humans; Insulin; Intensive Care Units;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
Conference_Location :
San Diego, CA
ISSN :
1557-170X
Print_ISBN :
978-1-4244-4119-8
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2012.6347224
Filename :
6347224
Link To Document :
بازگشت