DocumentCode :
2112452
Title :
Statistical inference by stereo vision: geometric information criterion
Author :
Kanazawa, Yasushi ; Kanatani, Kenichi
Author_Institution :
Dept. of Inf. & Comput. Eng., Gunma Coll. of Technol., Japan
Volume :
3
fYear :
1996
fDate :
4-8 Nov 1996
Firstpage :
1272
Abstract :
Introducing a mathematical model of noise in stereo images, we define the geometric information criterion (geometric AIC) for evaluating the goodness of an assumption about the object we are viewing. We show that we can test whether or not the object is located infinitely far away or the object is a planar surface without using any knowledge about the noise magnitude or any empirically adjustable thresholds. Synthetic and real-image examples are shown to illustrate our theory
Keywords :
image reconstruction; inference mechanisms; noise; statistical analysis; stereo image processing; empirically adjustable thresholds; geometric AIC; geometric information criterion; noise; statistical inference; stereo vision; Cameras; Computer science; Educational institutions; Image reconstruction; Lenses; Noise shaping; Optical noise; Shape; Stereo vision; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems '96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on
Conference_Location :
Osaka
Print_ISBN :
0-7803-3213-X
Type :
conf
DOI :
10.1109/IROS.1996.568981
Filename :
568981
Link To Document :
بازگشت