DocumentCode :
2113296
Title :
Millimeter wave beamforming based on WiFi fingerprinting in indoor environment
Author :
Mohamed, Ehab Mahmoud ; Sakaguchi, Kei ; Sampei, Seiichi
Author_Institution :
Graduate School of Engineering, Osaka University, Japan
fYear :
2015
fDate :
8-12 June 2015
Firstpage :
1155
Lastpage :
1160
Abstract :
Millimeter Wave (mm-w), especially the 60 GHz band, has been receiving much attention as a key enabler for the 5G cellular networks. Beamforming (BF) is tremendously used with mm-w transmissions to enhance the link quality and overcome the channel impairments. The current mm-w BF mechanism, proposed by the IEEE 802.11ad standard, is mainly based on exhaustive searching the best transmit (TX) and receive (RX) antenna beams. This BF mechanism requires a very high setup time, which makes it difficult to coordinate a multiple number of mm-w Access Points (APs) in mobile channel conditions as a 5G requirement. In this paper, we propose a mm-w BF mechanism, which enables a mm-w AP to estimate the best beam to communicate with a User Equipment (UE) using statistical learning. In this scheme, the fingerprints of the UE WiFi signal and mm-w best beam identification (ID) are collected in an offline phase on a grid of arbitrary learning points (LPs) in target environments. Therefore, by just comparing the current UE WiFi signal with the pre-stored UE WiFi fingerprints, the mm-w AP can immediately estimate the best beam to communicate with the UE at its current position. The proposed mm-w BF can estimate the best beam, using a very small setup time, with a comparable performance to the exhaustive search BF.
Keywords :
Antennas; Array signal processing; Dual band; Fingerprint recognition; IEEE 802.11 Standard; Protocols;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communication Workshop (ICCW), 2015 IEEE International Conference on
Conference_Location :
London, United Kingdom
Type :
conf
DOI :
10.1109/ICCW.2015.7247333
Filename :
7247333
Link To Document :
بازگشت