DocumentCode :
2118440
Title :
Accounting for input model and parameter uncertainty in simulation
Author :
Zouaoui, Faker ; Wilson, James R.
Author_Institution :
Res. Group, Sabre, Inc., Southlake, TX, USA
Volume :
1
fYear :
2001
fDate :
2001
Firstpage :
290
Abstract :
Taking into account input-model, input-parameter, and stochastic uncertainties inherent in many simulations, our Bayesian approach to input modeling yields valid point and confidence-interval estimators for a selected posterior mean response. Exploiting prior information to specify the prior plausibility of each candidate input model and to construct prior distributions on the model´s parameters, we combine this information with the likelihood function of sample data to compute posterior model probabilities and parameter distributions. Our Bayesian Simulation Replication Algorithm involves: (a) estimating parameter uncertainty by sampling from the posterior parameter distributions on selected runs; (b) estimating stochastic uncertainty by multiple independent replications of those runs; and (c) estimating model uncertainty by weighting the results of (a) and (b) using the corresponding posterior model probabilities. We allocate runs in (a) and (b) to minimize final estimator variance subject to a computing-budget constraint. An experimental performance evaluation demonstrates the advantages of this approach
Keywords :
Bayes methods; discrete event simulation; minimisation; parameter estimation; probability; sampling methods; stochastic processes; Bayesian Simulation Replication Algorithm; Bayesian approach; candidate input model; computing-budget constraint; confidence-interval estimators; final estimator variance minimization; input modeling; input-model; input-parameter; likelihood function; model uncertainty; multiple independent replications; parameter distributions; parameter uncertainty estimation; performance evaluation; posterior mean response; posterior model probabilities; posterior parameter distributions; prior distributions; prior information; prior plausibility; sample data; sampling; simulations; stochastic discrete-event simulations; stochastic uncertainties; stochastic uncertainty estimation; valid point estimators; Bayesian methods; Computational modeling; Distributed computing; Parameter estimation; Random number generation; Sampling methods; Stochastic processes; Uncertain systems; Uncertainty; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference, 2001. Proceedings of the Winter
Conference_Location :
Arlington, VA
Print_ISBN :
0-7803-7307-3
Type :
conf
DOI :
10.1109/WSC.2001.977287
Filename :
977287
Link To Document :
بازگشت