Title :
Coexistence of pico- and femto-cellular LTE-unlicensed with legacy indoor Wi-Fi deployments
Author :
Voicu, Andra M. ; Simic, Ljiljana ; Petrova, Marina
Author_Institution :
Institute for Networked Systems, RWTH Aachen University, Kackertstrasse 9, D-52072, Germany
Abstract :
Due to the high expected increase in mobile data traffic and the scarcity of licensed spectrum for cellular networks, 3GPP has started preliminary work for standardizing LTE operation in the 5 GHz unlicensed band (LTE-U). However, LTE-U would interfere with other legacy technologies operating in the unlicensed band, the most important being contention-based Wi-Fi, which would be blocked by conventional LTE, which is designed for dedicated licensed spectrum. Consequently, some coexistence-enabling mechanisms have been proposed for LTE-U, but their evaluation is still at an early stage. In this paper we present a detailed system-level study on the downlink throughput performance of legacy indoor IEEE 802.11n and LTE-U deployments coexisting in the 5 GHz band. We consider several LTE-U coexistence mechanisms (i.e. listen-before-talk and interference-aware channel selection) in indoor LTE-U femtocell and outdoor LTE-U picocell scenarios with a realistic range of network densities and real outdoor picocell locations. We also study coexistence of LTE-U networks deployed by multiple operators, and evaluate the impact of different LTE-U transmit power levels. Our results show that in general both Wi-Fi and LTE-U benefit from the large number of available channels and isolation provided by building shielding at 5 GHz. Additionally, in typical indoor coexistence scenarios, interference-aware channel selection is more efficient for both Wi-Fi and LTE-U than listen-before-talk mechanisms. For outdoor LTE-U picocells and indoor Wi-Fi deployments, the two networks are isolated from each other, but listen-before-talk can increase LTE-U user throughput when multiple outdoor LTE-U networks deployed by different cellular operators coexist.
Keywords :
Buildings; Downlink; IEEE 802.11 Standard; Interference; Multiaccess communication; Signal to noise ratio; Throughput;
Conference_Titel :
Communication Workshop (ICCW), 2015 IEEE International Conference on
Conference_Location :
London, United Kingdom
DOI :
10.1109/ICCW.2015.7247523