DocumentCode :
2120234
Title :
Hyperspectral data modelling by nonGaussian statistical distributions
Author :
Acito, N. ; Corsini, G. ; Diani, M.
Author_Institution :
Dipt. di Ingegneria dell´´Informazione, Pisa Univ., Italy
Volume :
2
fYear :
2004
fDate :
20-24 Sept. 2004
Firstpage :
968
Abstract :
In this manuscript we investigate on the statistical modeling of hyperspectral data. Accurately modeling real data is of paramount importance in the design of optimal classification or detection strategies and in evaluating their performances. In the work three nonGaussian models are considered and their capability in characterizing the statistical behavior of real data is discussed with reference to a data set acquired by the multispectral infrared and visible imaging spectrometer (MIVIS) sensor.
Keywords :
data analysis; geophysical signal processing; image classification; image sensors; statistical analysis; MIVIS sensor; Multispectral Infrared and Visible Imaging Spectrometer; hyperspectral/real data modelling; nonGaussian statistical distribution; optimal classification/detection strategy; Algorithm design and analysis; Atmospheric modeling; Detection algorithms; Hyperspectral sensors; Infrared image sensors; Infrared spectra; Optical imaging; Sensor phenomena and characterization; Spectroscopy; Statistical distributions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International
Print_ISBN :
0-7803-8742-2
Type :
conf
DOI :
10.1109/IGARSS.2004.1368570
Filename :
1368570
Link To Document :
بازگشت