DocumentCode :
2120415
Title :
S-SIFT: A Shorter SIFT without Least Discriminability Visual Orientation
Author :
Sheng-Hua Zhong ; Yan Liu ; Gangshan Wu
Author_Institution :
Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
Volume :
1
fYear :
2012
fDate :
4-7 Dec. 2012
Firstpage :
669
Lastpage :
672
Abstract :
Detection and description of local features are a classical problem in image processing and multimedia content analysis. Based on the in homogeneity of visual orientation in human visual system, we propose a novel algorithm S-SIFT to detect and describe local image features. In three stages of S-SIFT, the information from the least discriminability orientation is omitting. Compared with the standard SIFT algorithm, S-SIFT has lower dimension and provides a faster key point matching. Experiments on the standard dataset demonstrate that our algorithm yields comparable or even better results for feature detection and matching tasks.
Keywords :
data analysis; data visualisation; feature extraction; image matching; multimedia computing; S-SIFT algorithm; feature detection; feature matching tasks; human visual system; image processing; keypoint matching; least discriminability orientation; least discriminability visual orientation; local image features; multimedia content analysis; visual orientation inhomogeneity; descriptors; real-world distribution; scale-invariant feature transform; visual orientation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International Conferences on
Conference_Location :
Macau
Print_ISBN :
978-1-4673-6057-9
Type :
conf
DOI :
10.1109/WI-IAT.2012.134
Filename :
6511960
Link To Document :
بازگشت