DocumentCode :
2123172
Title :
Parametric identification using multilayer perceptron
Author :
López, Jesús A. ; Caicedo, Eduardo
Author_Institution :
Escuela de Ingenieria Electr. y Electron., Universidad del Valle, Cali
fYear :
0
fDate :
0-0 0
Lastpage :
4
Abstract :
In this work, we present an algorithm to extract a parametric model from a multi layer perceptron (MLP). The MLP is trained with input-output data collected from a process. This algorithm takes and processes the weights of the MLP to obtain a parametric model in difference equation form. As a first approach we use the MLP as a linear regresser. Next, we propose a scheme to extract the parameters from a neural network with non-linear activation functions applying Bayesian training. Comparisons between our parametric models and those using the identification system method show that the obtained models are similar to the traditional ones
Keywords :
Bayes methods; difference equations; multilayer perceptrons; parameter estimation; regression analysis; Bayesian training; difference equation; identification system; linear regresser; multilayer perceptron; neural network; nonlinear activation functions; parametric identification; Bayesian methods; Data mining; Delay; Difference equations; Multilayer perceptrons; Neural networks; Parametric statistics; Predictive models; South America; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics and Control Applications, 2005. ICIECA 2005. International Conference on
Conference_Location :
Quito
Print_ISBN :
0-7803-9419-4
Type :
conf
DOI :
10.1109/ICIECA.2005.1644375
Filename :
1644375
Link To Document :
بازگشت