DocumentCode :
2128504
Title :
A Lower Bound on the Minimum Distance of a 1-Generator Quasi-Cyclic Code
Author :
Woungang, Isaac ; Misra, Sudip ; Sadeghian, Alireza
Author_Institution :
Dept. of Comput. Sci., Ryerson Univ., Toronto, Ont.
fYear :
0
fDate :
0-0 0
Firstpage :
63
Lastpage :
65
Abstract :
Let Fq be the finite field of q elements and A=Fq [X]/(Xn-1) be the algebra of q-ary polynomials modulo X n-1. The 1-generator quasi-cyclic (QC) code of block length nm over Fq, of index a divisor of m, with generator alowbar(X)=(ai(X))0 m-1 is the A-cyclic submodule of Am defined as Aalowbar(X)={(lambda(X)ai(X))0 m-1 ,lambda(X)isin A}, under the module operation lambda(X)Sigmai=0 mai(X)Yi =Sigmai=0 m-1lambda(X)ai(X)Y i lambda(X)isinA, (a0(X),a1(X),..., am-1(X))isinAm, where lambda(X)ai(X) is reduced modulo Xn-1. Assuming that g.c.d(n,q)=1, we show that the projections of a q-ary 1-generator QC code V according to its components are q-ary cyclic codes. Based on this property, we determine a lower bound on the minimum distance of a 1-generator QC code by means of this generator
Keywords :
cyclic codes; polynomials; 1-generator quasicyclic code; finite field; q-ary polynomials; Algebra; Character generation; Equations; Linear code; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, 2006 23rd Biennial Symposium on
Conference_Location :
Kigston, Ont.
Print_ISBN :
0-7803-9528-X
Type :
conf
DOI :
10.1109/BSC.2006.1644571
Filename :
1644571
Link To Document :
بازگشت