DocumentCode :
2129137
Title :
Polarimetric SAR image classification-exploiting optimal variables derived from multiple-image datasets
Author :
Ainsworth, T.L. ; Lee, J.S.
Author_Institution :
Remote Sensing Div., Naval Res. Lab., Washington, DC, USA
Volume :
1
fYear :
2004
fDate :
20-24 Sept. 2004
Lastpage :
191
Abstract :
Polarimetric SAR image classification remains an important research area. Various methods continue to be developed for specific applications. Instead of focusing upon one specific problem, we have developed nonlinear dimensionality reduction techniques that extract information from inherently high dimensional datasets. We present computationally tractable, suboptimal extensions of the full nonlinear dimensionality reduction techniques. We apply these suboptimal techniques to polarimetric SAR image classification. Comparisons will be made between optimal and suboptimal techniques, and, as a reference, to standard statistical Wishart classifiers.
Keywords :
geophysical signal processing; image classification; radar imaging; radar polarimetry; synthetic aperture radar; multiple-image dataset; nonlinear dimensionality reduction technique; optimal-suboptimal variable technique; polarimetric SAR image classification; statistical Wishart classification; synthetic aperture radar; Costs; Data mining; Electronic mail; Focusing; Image analysis; Image classification; Laboratories; Layout; Pixel; Remote sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International
Print_ISBN :
0-7803-8742-2
Type :
conf
DOI :
10.1109/IGARSS.2004.1368991
Filename :
1368991
Link To Document :
بازگشت