DocumentCode :
2129453
Title :
Parameter Tuning for Differential Mining of String Patterns
Author :
Besson, Jérémy ; Rigotti, Christophe ; Mitasiunaite, I. ; Boulicaut, Jean-François
Author_Institution :
Inst. of Math. & Inf., Vilnius
fYear :
2008
fDate :
15-19 Dec. 2008
Firstpage :
77
Lastpage :
86
Abstract :
Constraint-based mining has been proven to be extremely useful for supporting actionable pattern discovery. However, useful conjunctions of constraints that support domain driven mining tasks generally need to set several parameter values and how to tune these parameters remains fairly open. We study this problem for substring pattern discovery, when using a conjunction of maximal frequency, minimal frequency and size constraints. We propose a method, based on pattern space sampling, to estimate the number of patterns that satisfy such conjunctions. This permits the user to probe the parameter space in many points, and then to choose some initial promising parameter settings. Our empirical validation confirms that we efficiently obtain good approximations of the number of patterns that will be extracted.
Keywords :
data mining; actionable pattern discovery; constraint-based mining; differential mining; knowledge discovery; parameter tuning; pattern space sampling; string patterns; substring pattern discovery; Association rules; Conferences; Data mining; Databases; Frequency; Informatics; Itemsets; Mathematics; Probes; Sampling methods; Differential Mining; Parameter Tuning; String Patterns;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops, 2008. ICDMW '08. IEEE International Conference on
Conference_Location :
Pisa
Print_ISBN :
978-0-7695-3503-6
Electronic_ISBN :
978-0-7695-3503-6
Type :
conf
DOI :
10.1109/ICDMW.2008.118
Filename :
4733925
Link To Document :
بازگشت