DocumentCode :
2129579
Title :
Proportional-integral-plus (PIP) design for stochastic delta operator systems
Author :
Chotai, A. ; Young, P.C. ; Tych, W. ; Lees, M.
Author_Institution :
Lancaster Univ., UK
Volume :
1
fYear :
1994
fDate :
21-24 March 1994
Firstpage :
75
Abstract :
The paper shows how proportional-integral-plus (PIP) control system design for rapidly sampled systems described by delta ( delta ) operator transfer function models is based on the formulation of a special non-minimum state space (NMSS) representation, whose state variables are the discrete-time derivatives of the output and input signals. The stochastic version of this model provides the basis for linear quadratic Gaussian (LQG) control system design in the delta domain. As in the more conventional minimum state space situation, the state variable feedback PIP control law is obtained straightforwardly by the introduction of a Kalman filter and the application of the separation principle. Although the resulting PIP control system is simple to implement, its exploitation of state variable feedback (SVF) ensures the power and flexibility of its operation.
Keywords :
Kalman filters; control system synthesis; feedback; optimal control; sampled data systems; stochastic systems; transfer functions; two-term control; Kalman filter; LQG control system; PIP control system; delta ( delta ) operator transfer function models; discrete-time derivatives; linear quadratic Gaussian control system; non-minimum state space representation; proportional-integral-plus control system; rapidly sampled systems; separation principle; state variable feedback PIP control law; stochastic delta operator systems;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Control, 1994. Control '94. International Conference on
Conference_Location :
Coventry, UK
Print_ISBN :
0-85296-610-5
Type :
conf
DOI :
10.1049/cp:19940112
Filename :
327165
Link To Document :
بازگشت